
xp123.com

The Test/Code Cycle in XP, Part 1:
Model

Catch Themes
18-23 Minuten

This paper demonstrates the development of a small
bibliographic system using Extreme Programming
techniques. Part 1 shows development of the model; part 2
shows development of the associated user interface.

Specifically, it shows how unit tests and simple design work
together while programming. Observe how the coding
process occurs in small steps, just enough implementation
to make each test run. There's a rhythm to it, like a
pendulum of a clock: test a little, code a little, test a little,
code a little. (To bring this out, we'll align test code to the
left of the page, and application code to the right.)

For this example, suppose we have bibliographic data with
author, title, and year of publication. Our goal is to write a
system that can search that information for values we
specify. We have in mind an interface something like this:

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

1 von 22 16.08.17, 11:59

We'll divide our work into two parts: the model and the user
interface.

For our model, we have a collection of Documents, which
know their metadata. A Searcher knows how to find
Documents: given a Query, it will return a Result (a set of
Documents). We'll create our unit tests (and our classes)
bottom-up: Document, Result, Query, and Searcher.

Document, Result, and Query

Document

A Document needs to know its author, title, and year. We'll
start with a "data bag" classs, beginning with its test:

public void testDocument() {

 Document d = new

Document("a", "t", "y");

 assertEquals("a",

d.getAuthor());

 assertEquals("t",

d.getTitle());

 assertEquals("y",

d.getYear());

}

This test doesn't compile (as we haven't created the
Document class yet). Create the class with stubbed-out
methods.

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

2 von 22 16.08.17, 11:59

Run the test again to make sure it fails. This may seem
funny – don't we want the tests to pass? Yes, we do. But by
seeing them fail first, we get some assurance that the test is
valid. And once in a while, a test passes unexpectedly:
"that's interesting!"

Fill in the constructor and the methods to make the test
pass.

Let's highlight this mini-process:

The Test/Code Cycle in XP

Write one test.

Compile the test. It should
fail, as you haven't
implemented anything yet.

Implement just enough to
compile. (Refactor first if
necessary.)

Run the test and see it fail.

Implement just enough to
make the test pass.

Run the test and see it pass.

Refactor for clarity and "once
and only once".

Repeat from the top.

This process ensures that you've seen the test both fail and
pass, which gives you assurance that the test did test
something, that your change made a difference, and that

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

3 von 22 16.08.17, 11:59

you've added valued functionality.

Some people will advocate not bothering to test simple
setter and getter methods. ("They can't possibly be wrong.",
"It's a pain to write a bunch of getter/setter tests.") I tend to
write the tests anyway:

It doesn't take that much time to write the test, and it's
certainly not hard, but it gives you that extra edge. ("You
thought you were sure it's ok; now you have a test that
demonstrates it.")

A test will often have a longer lifetime than the code it's
testing. The test is there so when you add caching, or don't
create objects until required, or add logging, etc., you still
have assurance that the original function will work.

Boring tests full of setters and getters are often trying to tell
you something: the class may not be pulling its weight.
When a class is almost a "struct", it's often a sign that the
responsibilities aren't distributed right between classes.

Result

A Result needs to know two things: the total number of
items, and the list of Documents it contains. First we'll test
that an empty result has no items.

public void testEmptyResult() {

 Result r = new Result();

 assert ("count=0 for empty

result", r.getCount() == 0);

}

Create the Result class and stub out its getCount()

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

4 von 22 16.08.17, 11:59

method. See it fail until you add "return 0;" as its
implementation.

Next test a result with two documents.

public void

testResultWithTwoDocuments() {

 Document d1 = new

Document("a1", "t1", "y1");

 Document d2 = new

Document("a2", "t2", "y2");

 Result r = new Result(new

Document[]{d1, d2});

 assert (r.getCount() == 2);

 assert (r.getItem(0) == d1);

 assert (r.getItem(1) == d2);

}

Add the getItem() method (returning null) and watch the
test fail. (I'm going to stop mentioning that, but keep doing
it. It takes a few seconds, but gives that extra bit of
reassurance.) Implementing a simple version of Result will
give:

public class Result {

 Document[] collection = new

Document[0];

 public Result() {}

 public

Result(Document[]collection) {

 this.collection =

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

5 von 22 16.08.17, 11:59

collection;

 }

 public int getCount()

{return collection.length;}

 public Document getItem(int

i) {return collection[i];}

}

The test runs, so we're done with this class.

Query

We'll represent the Query as just its query string.

public void testSimpleQuery() {

 Query q = new Query("test");

 assertEquals("test",

q.getValue());

}

Create the Query class with a constructor, so that it
remembers its query string and reports it via getValue().

Searcher

The Searcher is the most interesting class. The easy case
is first: we should get nothing back from an empty collection
of Documents.

public void

testEmptyCollection() {

 Searcher searcher = new

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

6 von 22 16.08.17, 11:59

Searcher();

 Result r = searcher.find(new

Query("any"));

 assert(r.getCount() == 0);

}

This test doesn't compile, so stub out the Searcher class.

public class Searcher {

 public Searcher() {}

 Result find(Query q) {return

null;}

}

The test compiles, but fails to run correctly (because
find() returns null). We can fix this with this change:
"public Result find(Query q) {return new
Result();}".

Things get more interesting when we try real searches.
Then we face the issue of where the Searcher gets its
documents. We'll begin by passing an array of Documents
to the Searcher's constructor. But first, a test.

public void

testOneElementCollection() {

 Document d = new

Document("a", "a word here",

"y");

 Searcher searcher = new

Searcher(new Document[]{d});

 Query q1 = new

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

7 von 22 16.08.17, 11:59

Query("word");

 Result r1 =

searcher.find(q1);

 assert(r1.getCount() == 1);

 Query q2 = new

Query("notThere");

 Result r2 =

searcher.find(q2);

 assert (r2.getCount() == 0);

}

This test shows us that we have to find what is there, and
not find what's not there.

To implement this, we have to provide the new constructor
that makes the test compile (though it still fails). Then we
have to get serious about implementation.

First, we can see that a search has to retain knowledge of
its collection between calls to find(), so we'll add a
member variable to keep track, and have the constructor
remember its argument:

Document[] collection = new

Document[0];

public Searcher(Document[] docs)

{

 this.collection = docs;

}

Now, the simplest version of find() can iterate through its
documents, adding each one that matches the query to a

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

8 von 22 16.08.17, 11:59

Result:

public Result find(Query q) {

 Result result = new

Result();

 for (int i = 0; i <

collection.count; i++) {

 if

(collection[i].matches(q)) {

result.add(collection[i]);

 }

 }

 return result;

}

This looks good, except for two problems: Document has no
matches() method, and Result has no add() method.

Let's add a test: we'll check that each field can be matched,
and that a document doesn't match queries it shouldn't:

public void

testDocumentMatchingQuery() {

 Document d = new

Document("1a", "t2t", "y3");

 assert(d.matches(new

Query("1")));

 assert(d.matches(new

Query("2")));

 assert(d.matches(new

Query("3")));

 assert(!d.matches(new

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

9 von 22 16.08.17, 11:59

Query("4")));

}

There are three situations for queries that we should deal
with eventually: empty queries, partial matches, and case
sensitivity. For now, we'll assume empty strings and partial
matches should match, and the search is case-sensitive. In
the future we might change our mind.

This is enough information to let us implement matches:

public boolean matches(Query q)

{

 String query = q.getValue();

 return

 author.indexOf(query) !=

-1

 || title.indexOf(query) !=

-1

 || year.indexOf(query) !=

-1;

}

This will enable testDocumentMatchingQuery() to
work, but testOneElementCollection() will still fail,
because Result has no add() method yet. So, add a test
for the method Result.add():

public void testAddingToResult()

{

 Document d1 = new

StringDocument("a1", "t1",

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

10 von 22 16.08.17, 11:59

"y1");

 Document d2 = new

StringDocument("a2", "t2",

"y2");

 StringResult r = new

StringResult();

 r.add(d1);

 r.add(d2);

 assert ("2 items in result",

r.getCount() == 2);

 assert ("First item",

r.getItem(0) == d1);

 assert ("Second item",

r.getItem(1) == d2);

}

This test fails. Result already remembers its list by using an
array, but that is not the best choice for a structure that
needs to change its size. We'll change to use a Vector:

Vector collection = new Vector();

public Result(Document[] docs) {

 for (int i = 0; i < docs.length;

i++) {

this.collection.addElement(docs[i]);

 }

}

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

11 von 22 16.08.17, 11:59

public int getCount() {return

collection.size();}

public Document getItem(int i) {

 return

(Document)collection.elementAt(i);

}

Make sure the old unit tests testEmptyResult() and
testResultWithTwoDocuments() still pass. Add the
new method:

public void add(Document d) {

 collection.addElement(d);

}

Let's consider the the new Result(Document[])
constructor. It was introduced to support the
testResultWithTwoDocuments() test, because it was
the only way we could create Results containing
documents. Later, we introduced Result.add(), which is
what the Searcher needs. The array constructor is no
longer needed. So, we'll put on a testing hat and revise that
test. Instead of Result r = new Result(new
Document[]{d1,d2});, we'll use:

Result r = new Result();

r.add(d1);

r.add(d2);

We verify that all tests still pass, so it is now safe to remove
the array-based constructor. We also see that

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

12 von 22 16.08.17, 11:59

testAddingToResult() is now essentially a duplicate of
testResultWithTwoDocuments(), so we'll remove the
latter.

Finally, all our tests pass for Document, Result, Query, and
Searcher.

Initialization

Loading Documents

Where does a searcher get its documents? Currently, you'd
call its constructor from the main routine, passing in an
array of documents. Instead, we want the searcher to own
the process of loading its documents.

We begin with a test. We'll pass in a Reader, and be
prepared to see exceptions. We've also postulated a
getCount() method, used only by tests to verify that
something was loaded. An advantage of having the tests in
the same package as the class under test is that you can
provide non-public methods that let tests view an object's
internal state.

public void

testLoadingSearcher() {

 try {

 String docs =

"a1tt1ty1na2tt2ty2"; // t=field,

n=row

 StringReader reader =

new StringReader(docs);

 Searcher searcher =

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

13 von 22 16.08.17, 11:59

new Searcher();

searcher.load(reader);

 assert("Loaded",

searcher.getCount() == 2);

 } catch (IOException e) {

 fail ("Loading

exception: " + e);

 }

}

Notice that Searcher still uses an array (the simplest choice
at the time). We'll do as we did for Result, a refactoring
converting from an array to a Vector.

package search;

import java.util.*;

public class Searcher {

 Vector collection = new

Vector();

 public Searcher() {}

 public Searcher(Document[]

docs) {

 for (int i = 0; i <

docs.length; i++) {

collection.addElement(docs[i]);

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

14 von 22 16.08.17, 11:59

 }

 }

 public Query makeQuery(String

s) {

 return new Query(s);

 }

 public Result find(Query q) {

 Result result = new

Result();

 for (int i = 0; i <

collection.size(); i++) {

 Document doc =

(Document)collection.elementAt(i);

 if (doc.matches(q)) {

 result.add(doc);

 }

 }

 return result;

 }

}

(Verify that the old tests pass.) Now we're in a position to do
the loading:

// Searcher:

public void load(Reader reader)

throws IOException {

 BufferedReader in = new

BufferedReader(reader);

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

15 von 22 16.08.17, 11:59

 try {

 String line =

in.readLine();

 while (line != null) {

collection.addElement(new

Document(line));

 line =

in.readLine();

 }

 } finally {

 try {in.close();} catch

(Exception ignored) {}

 }

}

int getCount() {

 return collection.size();

}

// Document:

public Document(String line) {

 StringTokenizer tokens = new

StringTokenizer(line, "t");

 author = tokens.nextToken();

 title = tokens.nextToken();

 year = tokens.nextToken();

}

Searcher's array-based constructor is no longer needed.
We'll adjust the test and delete the constructor:

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

16 von 22 16.08.17, 11:59

public void

testOneElementCollection() {

 Searcher searcher = new

Searcher();

 try {

 StringReader reader =

new StringReader("ata word

herety");

 searcher.load(reader);

 } catch (Exception ex) {

 fail ("Couldn't load

Searcher: " + ex);

 }

 Query q1 =

searcher.makeQuery("word");

 Result r1 =

searcher.find(q1);

 assert(r1.getCount() == 1);

 Query q2 =

searcher.makeQuery("notThere");

 Result r2 =

searcher.find(q2);

 assert (r2.getCount() == 0);

}

SearcherFactory

Where does a Searcher come from? Currently, that's left up
to whoever calls its constructor. Instead of letting clients

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

17 von 22 16.08.17, 11:59

depend on the constructor, we'd like to introduce a factory
method responsible for locating the Searcher. (For the test,
we'll put a file "test.dat" in the directory for testing. If we
wanted to be less lazy, we'd have the test create and delete
the file as well.)

public void

testSearcherFactory() {

 try {

 Searcher s =

SearcherFactory.get("test.dat");

 assert (s != null);

 } catch (Exception ex) {

 fail ("SearcherFactory

can't load: " + ex);

 }

}

We can implement:

public class SearcherFactory {

 public static Searcher

get(String filename) throws

IOException {

 FileReader in = new

FileReader(filename);

 Searcher s = new

Searcher();

 s.load(in);

 return s;

 }

}

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

18 von 22 16.08.17, 11:59

Now, a client obtains a Searcher by asking a
SearcherFactory to give it one.

Looking Back

I'd like to put a design hat on, and look at the methods
we've developed, from two perspectives: the search client
and the Searcher class. Who uses each public method?

Search Client Searcher class
Document.getAuthor()
Document.getTitle()
Document.getYear()
new Query()
Result.getCount()
Result.getItem()
Searcher.find()

new Document()
Document.matches()
Query.getValue()
new Result()
Result.add()

Looking at the Document and Query classes, I still have
twinges that say they may not be doing enough (being not
much more than a "data bag"). But both seem like good,
meaningful "near-domain" classes, so we'll hold off on any
impulse to change them. The Result and Searcher classes
feel like they have the right balance.

What about the development process? It seemed to
generate some blind alleys. For example, we had to change
data structures from arrays to vectors (twice!). Is this a flaw
in our process? No, it's not. The array was an adequate
structure when it was introduced, and it was changed when
necessary. We don't mind blind alleys, as long as they're
never one-way dead ends. We're not omniscient, so there
will be times we need to change our minds; the key is

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

19 von 22 16.08.17, 11:59

making sure we never get stuck with a bad or over-complex
design.

Moving Forward: Interfaces

The implementation we've derived above is a good starting
point, but is not in final form. In real systems, the
bibliographic information is often kept elsewhere, perhaps in
a database, XML file, on another network, etc. We don't
want our clients to know which alternative they're using.

The methods in the "Search Client" column of the table
above show the interfaces required by clients. "Query" is
probably OK as a class (since clients have to be able to
construct them), but we would like to introduce interfaces
for Searcher, Result, and Document. We'll apply the
"Extract Interface" refactoring (from Fowler's book).

Unfortunately, the names we'd like for our interfaces are the
same as the ones we already use for the classes. Since
we'd like things to be better from the client point of view,
and the classes so far are based on strings, we'll rename
Searcher to StringSearcher, etc. and reserve the shorter
names for the interfaces.

So, move Searcher.java to StringSearcher.java. Fix every
call site and reference. Run the tests to verify that we've
renamed correctly.

Introduce the interface:

public interface Searcher {

 public Result find(Query q);

}

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

20 von 22 16.08.17, 11:59

(Run the tests.) Make StringSearcher implement the
interface. (Run the tests.) Now, the only place that must
reference StringSearcher by name is the SearcherFactory
interface. (We could remove that dependency, and perhaps
also put the String* objects in a different package, but we
won't do that here for reasons of space.)

Apply the same process to Result, renaming the old Result
to StringResult, and introducing the interface:

public interface Result {

 public Document getItem(int

i);

 public int getCount();

}

The StringSearcher class should still construct a
StringResult object, but its return type should remain
Result. (We don't mind if the String* classes depend on
each other, but we don't want to make clients aware of that
fact.)

Finally, introduce the interface for Document:

public interface Document {

 public String getAuthor();

 public String getTitle();

 public String getYear();

}

We're left with two concrete classes that clients will depend
on: SearcherFactory and Query. Clients depend on the
interfaces for Searcher, Result, and Document, but not
directly on the classes implementing those interfaces.

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

21 von 22 16.08.17, 11:59

Conclusion

We've developed the bibliographic system's model in a
typical Extreme Programming style, emphasizing simple
design and a process of alternately testing and coding. The
unit tests supported us in designing, coding, and
refactoring. The resulting system could have either a simple
command line or a graphical user interface attached to it.

Resources and Related Articles

This article is the basis for chapter 1 in Extreme
Programming Explored, by Bill Wake.

search.zip (preferred) or search.jar contains all Java code.

"The Test/Code Cycle in XP: Part 2, GUI," William Wake. (A
chapter in Extreme Programming Installed, by Ron Jeffries
et al.)

Extreme Programming Explained: Embrace Change, Kent
Beck, Addison-Wesley, 1999.

Refactoring: Improving the Design of Existing Code, Martin
Fowler, Addison-Wesley, 1999.

JUnit home

Test-First Challenge

Translations

Japanese: Part 1, Part 2. Courtesy of Shinichi Omura.

[Written 1-25-2000; re-titled and revised 2-3-2000; added search.zip

7-2-00.]

The Test/Code Cycle in XP, Part 1: Model about:reader?url=http://xp123.com/articles/the-testcode-cycle-...

22 von 22 16.08.17, 11:59

